
5.5  The real zeros of a polynomial function 

 Recall,   that c is a zero of a polynomial f(x),  if  f(c) = 0.  

Example: 

a) Find real  zeros of f(x)= x
2
 + x - 1.  We need to find x for which f(x) = 0, that is we have to solve the equation   x

2
 + 

x - 1 = 0.  Using quadratic formula we get 
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The equation has two solutions , therefore  f(x)= x
2
 + x – 1 has two zeros 
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b) Find real zeros of f(x) = x
2
 – 3. To find zeros we need to solve the equation  x

2
 – 3 = 0. Using the square root 

method we get  x
2
 = 3  and 3x . Hence the zeros  are  3 and  3 . 

c) Find real zeros of f(x) = x
2
 + 4. The equation x

2
 + 4 = 0 has no real solution (x

2
 = -4 is never true, no matter what x 

is). Therefore f(x) = x
2
 + 4  has no real zeros. 

Theorem   Division Algorithm for Polynomials 

Suppose that f(x) and g(x) are polynomials and that the degree of g is not zero (g(x) is not a constant). Then there are 

unique polynomials Q(x) and  R(x)  such that 
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where the degree of R(x) < the degree of g(x). 

 f(x) is called the dividend, g(x) is called the divisor,  Q(x) is the quotient and R(x) is the remainder. 

 

If  g(x) = (x-c) , then f(x) = (x-c)Q(x) + R(x) , and  the degree of R(x) <  the degree of g(x)= 1. Hence, R(x) is a 

constant, R(x) = R. Note also that when x = c, we get f(c) = (c-c)q(c) + R = R. 

 

Theorem   Remainder Theorem 

If f is a polynomial, then when f(x) is divided by (x-c), the remainder  R = f(c). 

Factor Theorem 

(x-c)  is a factor of a polynomial f(x) if and only if f(c) = 0 

Proof:   f(x) = (x-c)Q(x) + f(c) 

 

Example: 

a)  Let f(x) = 4x
4
 – 15x

2
 – 4. Find the remainder when f(x) is divided by x-2 

When f (x) is divided by (x-2), then the remainder R = f(2) = 4(2)
4
-15(2)

2
- 4= 64 -60-4 = 0. Hence, (x-2) is a factor of 

f(x), that is f(x) = (x-2)Q(x), where Q(x) is a polynomial. 

b) Let f(x) = 2x
6
 – 18x

4
 + x

2
– 9. Find the remainder when f(x) is divided by x+ 1. 



Note first that x+1 = x-(-1). 

When f (x) is divided by (x –(- 1)), then the remainder is  

                                  R = f(-1) = 2(-1)
6
 – 18(-1)

4
 + (-1)

2
– 9= 2-18 +1 -9= -24 

Therefore (x+1) is not a factor of f(x).  

 

Theorem 

A polynomial of degree n can have at most n  real zeros. 

 

Example:   How many real zeros can the polynomial  f(x) = 2x
6
 – 18x

4
 + x

2
– 9 have? 

Degree of f(x) = 6, so there are at most 6 real zeros. 

 

Example: 

a) Since f(x) = x
2
 + x – 1 has two real zeros 
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c) f(x) = x
2
 + 4  has no real zeros, so it cannot be factored  over the real numbers. We call such a polynomial             

irreducible  or prime 

 

Theorem   

Every polynomial function  with real coefficients can be uniquely factored into a product of linear factors (x-c)  and /or 

irreducible  quadratic factors (ax
2
 + bx+c) 

Theorem 

A polynomial function with real coefficients and with odd degree must have at least one real zero. 

 

Theorem   Rational Zeros Theorem 

Supose f(x) = anx
n
 + an-1x

n-1
 + …+a1x + a0,    an, a0 ≠ 0 , where all coefficients ak  are integers,   is a polynomial of degree 

greater than 0. If p/q is a rational zero of f(x), then p divides a0  and q divides an. 

In other words, any rational zero of a polynomial with integer coefficients, must be of the form                  

                           

naoffactor

aoffactor 0  

 



Example: 

List all potential zeros of the polynomial   f(x) = -4x
3
 + x

2
 + x + 6 

a3 = -4 ;  factors:   ±1, ±2, ±4   (p) 

a0 = 6  ; factors :  ±1, ±2, ±3 , ±6    (q) 
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Remark: A polynomial function  with integer coefficients might not have any rational  (or even real) zeros. For 

example f(x) = x
2  

 - 2 has  no rational zeros (the zeros are 2  ), and f(x) = x
2
 + 2 has no real zeros at all. 

Once we know potential zeros, we can check whether they are actual zeros, either by computing value of the 

polynomial at the potential zero or performing division.  

Example: 

Find  all real zeros of the given polynomial and then factor the polynomial 

f(x) = x
3
 + 8x

2
 + 11x -20 

 degree of f  = 3; so there are at most 3 zeros 

 all coefficients are integers, so we will look for rational zeros among the numbers of the form 

naoffactor

aoffactor 0  

a0 = - 20 ;     factors of a0 :  ±1, ±2, ±4 , ±5,  ±10, ±20    

an  = 1 ; factors of an :   ±1 

20,10,5,4,2,10 
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(i) Is  x= 1 a zero?   

 f(1)= (1)
3
 + 8(1)

2
 + 11(1) -20= 1+8+11-20 = 0;  So,  x = 1 is a zero 

            Therefore,  f(x) = x
3
 + 8x

2
 + 11x -20 = (x-1)Q(x). 

 To find Q(x), we must  divide f(x) = x
3
 + 8x

2
 + 11x -20  by (x-1). We can use either long division or a simplified 

version called synthetic division (applied ONLY when the divisor is of the form  (x-c)) 

Long division: 

          x
2 
+ 9x + 20_____  this is the quotient Q(x) 

x -1  x
3
+  8x

2
 +  11 x - 20                           divide  x

3
 by  x 

           x
3
 – x

2 
                                        multiply x

2
(x-1)  and  subtract; 

                  9x
2
 + 11x - 20                           divide 9x

2
 by  x 

                   9x
2
 – 9x                                multiply 9x(x-1) and subtract; 

                            20x -20                           divide 20x by x 

                            20x  - 20                             multiply 20(x-1)  and subtract 

                                       0            this is the remainder R 

 

 

 

 

 



Synthetic division:   

 

So , Q(x) = x
2
 + 9x + 20 and   f(x) = x

3
 + 8x

2
 + 11x -20 = (x-1)(x

2
+ 9x+20). 

Now we must find zeros of Q(x) = x
2
 + 9x + 20. Since it is a quadratic polynomial we solve the equation  Q(x) =  0  or 

  x
2
 + 9x + 20 = 0  either by factoring or using the quadratic formula (if factoring does not work).  

Since  x
2
 + 9x + 20 = (x+4)(x+5), the equation becomes (x+4)(x+5) = 0  

the zeros  are -4 and -5. 

 

Therefore the zeros of f(x) are 1, -4, -5 and f(x) = (x-1)(x+4)(x+5)  

 

 

Solving  polynomial equations 

If f(x) is a polynomial, then the equation f(x) = 0 is called a polynomial equation. To solve such an equation, means to 

find zeros of the polynomial function f(x). 

Example: 

Solve the equation  2x
3
 -11x

2
+ 10x + 8 = 0 

Let  f(x) = 2x
3
 -11x

2
+ 10x + 8 . We look for the rational zeros, since the equation has integer coefficients. 

Factors of ao  are :  ±1, ±2, ±4 , ±8 

Factors of an=a3 are :  ±1, ±2 

Possible zeros:  
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Is  x= 1 a zero?  f(1) = 2-11+10+8 = 9 ≠ 0 ,  so x = 1 is not a zero 

Is x = -1 a zero?  f(-1) = -2 -11 – 10 + 8 = - 15 ≠ 0, so x = -1 is not a zero 

Is x = 2 a zero?  f(2) = 16 – 44+ 20 + 8 = 0, so x = 2 is  a zero 

Since x = 2 is a zero, then (x-2) is a factor of f(x), that is f(x) = (x-2)Q(x). To  find Q(x) we’ll use synthetic division          
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And therefore,  Q(x) = 2x
2
 -7x- 4. Since Q(x) is a quadratic polynomial, we use the learned techniques to try to factor 

it. Indeed  Q(x) = 2x
2
 -7x- 4 = (2x+1)(x-4). 

Therefore  f(x) = 2x
3
 -11x

2
+ 10x + 8 = (x-2)( 2x

2
-7x- 4)= (x-2)(2x+1)(x - 4) . 

So the zeros, or the solutions of f(x) = 0,  are 2, -1/2, 4.  

 



5.1 Polynomial Functions 

A polynomial functions is a function of the form f(x) = anx
n
 + an-1x

n-1
 + …+ a1x + a0 

Example: f(x) = 3x
3
 – 2x

2
 + 5x - 4 

The domain of a polynomial function is the set of all real numbers.  

The x-intercepts are the solutions of the equation anx
n
 + an-1x

n-1
 + …+ a1x + a0 = 0 

The y-intercept is y = f(0) = a0.  

The graph of a polynomial function does not have holes or gaps (we say that a polynomial function is continuous) and 

it does not have sharp corners or cusps (we say it is smooth). 

Power functions: f(x) = x
n
 , n is a natural number 

The graphs of some power functions are given below 

                

                           n- even                                                                                   n- odd 

Notice that when n is even, a power function y = x
n
   behaves like a parabola (graph is symmetric about the y-axis and 

contains points (-1,1), (0,0), (1,1)). When n is odd, a power function y = x
n
, n > 1 has the graph similar to the cube 

function (symmetric about the origin, contains the points (-1,-1), (0,0), (1,1)). 

Power function f(x) = ax
n 

, a  0 

The graph of f(x) = ax
n
  is obtained  from the graph of y = x

n
 by stretching  by a factor of a, if a is positive, and 

stretching by the factor of |a| and reflecting about the x-axis, if a is negative. 

   

                           n- even                                                                                               n – odd 



Zeros of a polynomial function 

If r is such a number that f(r) = 0, then r is called a zero of the function f. 

If r is a zero of a polynomial function f, then we have the following: 

(i) f(r) = 0 

(ii) (r, 0 ) is an x-intercept of f 

(iii)  (x-r) is a factor of f(x), that is f(x) = (x-r)q(x)  ( q(x) is the quotient in the division f(x)   (x-r)) 

We say that r is a zero of multiplicity n, if n is the largest power, such that f(x) = (x-r)
n
 q(x) 

 

Example: Let f(x) = x
4
 –2 x

3
 + 3x

2
 – x -1.  Note that f(1) = (1)

4
 -2(1)

3
+3(1)

2
-(1)- 1= 1-2+3-1-1 = 0. 

Therefore, r = 1 is a zero of f. This also means, that (1,0 ) is an x-intercept and that (x-1) is a factor of f(x), that is, 

when f(x) is divided by (x-1) the remainder is 0. 

To find the other factor, q, we perform the division 

                                 x
3
 – x

2
+ 2x + 1 

                        x-1 x
4
 – 2x

3
 + 3x

2
 – x - 1  

                            -   x
4
  - x

3
                         

                                       - x
3
 +3x

2
 – x – 1 

                                    -   -x
3  

+x
2
 

                                                2x
2
 –x – 1 

                                            -   2x
2
 – 2x 

                                                           x – 1 

                                                    -      x – 1  

                                                                 0 

Therefore, f(x) =   x
4
 – 2x

3
 + 3x

2
 – x – 1 = (x-1)(x

3
 – x

2
 + 2x+ 1). 

 

What is the multiplicity of that zero?   

Since (x-1) is a factor of f(x), then the multiplicity of x = 1 is at least 1.  If x= 1 had the multiplicity two, then f(x) 

would have  (x-1)
2

  as a factor. Which means that the quotient q above,  q(x) =  x
3
 – x

2
 + 2x + 1, would have (x-1) as a 

factor. If (x-1) were a factor of q(x), then x =1 would be a zero of q.  But q(1) = (1)
3
 – (1)

2
 + 2(1) + 1 = 3  0. This 

means that (x-1) is not a factor of q(x) and consequently, (x-1)
2
 is not a factor of f(x).  Hence, the multiplicity of x = 1 

is one. 

Example: Find all zeros of function f(x) = 2(x-3)(x+2)(x+3)
2
(x-5)

4
 and determine their multiplicity 

To find zeros, solve the equation f(x) = 0 

                     2(x-3)(x+2)(x+3)
2
(x-5)

4
 = 0      (use the Zero Product property) 

                       x-3 = 0  or  x+2 = 0   or x+3= 0    or x- 5 = 0 

    So the zeros are :  3, -2, -3, 5 

To find the multiplicities: 

  (i) factor the polynomial completely; use exponents to indicate multiple factors 

  (ii) The multiplicity of a zero r is the exponent of the factor (x-r) that appears in the product 



 

                       f(x) = 2(x-3)
1
(x+2)

1
(x+3)

2
(x-5)

4
  

zeros 3 -2 -3 5 

multiplicity 1 1 2 4 

 

Suppose r is the zero of a polynomial function. (Remember that (r,0) is then an x-intercept) 

If r is a zero of even multiplicity, then the graph of f will touch the x axis at the intercept (r, 0) as shown below. 

 

         or             

 

If r is a zero of odd multiplicity, then the graph of f will cross the x-axis at the intercept (r,0) as shown below. 

Multiplicity one 

    or       

Multiplicity larger than 1 (odd) 

 

             or              



One of the theorems of algebra says that every polynomial can be factored in such a way that the only factors are : 

(a)   a number (the leading coefficient) 

(b)  (x – r)
n
  , where r is a zero with multiplicity n 

 (c)  (x
2
 +bx +c)

m
 , where x

2
 + bx + c  is prime 

Remark:  This theorem says that such factorization is possible, but it does not say how to obtain such factorization. 

 

End behavior of a polynomial function 

When |x| is large (x is large positive or large negative), then the graph of 

 f(x) = anx
n
 + an-1x

n-1
 + …+ a1x + a0  behaves like the graph of y = an x

n
, where an is the leading coefficient and n is the 

degree of f(x). 

n- odd  

an positive                                                        an  negative 

                           

 

n- even 

 an positive                                                         an  negative 

 

                                

 

Example:  Determine the degree and the leading coefficient of the polynomial function  

f(x) = 3(x-2)(x+4)
2
(x

2
+2)

3
. Give the equation of the power function that the function f behaves like for x with large 

absolute value. 

                             f(x) = 3(x-2)(x+4)
2
(x

2
+2)

3
 

This polynomial is already factored. 

The leading coefficient is 3.  

The degree can be obtained by adding the highest exponents of x from each factor 



 

factor 3 x-2 (x+ 1)
2 

(x
2
+2)

3 

degree 0 1 2 6 

 

Degree =  1 + 2+ 6 = 9 

Therefore, for large |x|, f(x) behaves like y = 3x
9
. 

Sketching the graph of a polynomial function 

(I) use transformations, when possible 

(II) If the transformations cannot be performed, use the information above to sketch the graph 

Example:  Graph f(x) = 2(x-1)
5
 + 3.  

We can graph this function using transformations 

 The order of transformations is as follows 

1) graph basic function  y = x
5
 

2) Shift the graph 1 unit to the right to obtain  y = (x-1)
5
 

3) Stretch the graph by a factor of 2, to obtain y = 2(x-1)
5
 

4) Shift the graph up by 3 units to obtain y = 2(x-1)
5
 + 3 

 

 

 

 

 



Example:  Graph  f(x) = 2(x-3)(x+4)
3
 

Transformations cannot be used 

(i) Determine the zeros, if any,  of f, their multiplicity  and the behavior of graph near each zero 

                 f(x) = 2(x-1)
2
(x+2)

3
 

zeros 1  - 2 

multiplicity 2   3 

behavior of 

graph 

touches x-axis at 1 Crosses x-axis  at -2  like a cubic function 

 

(ii) Determine the end behavior of f 

We need the leading coefficient and the degree of f(x) 

             f (x) = 2(x-3)(x+4)
3
 

Leading coefficient = 2 

Degree:  

factor 2 (x-3)
2 

(x+4)
3 

degree 0 2 3 

  

Degree of f = 0+2+3 = 5 

f(x) behaves as y = 2 x
5 
 for large |x|       

                       

(iii) Use the information from (i) and (ii) to draw the graph.  

The graph will start in the third quadrant (green piece). It will continue to the first zero (-2) at which it will cross the x-

axis like a cubic function (red piece). The graph will increase for a while, but then it will have to turn to reach the 

second zero( 1), at which it will touch the x-axis (red piece). Since there are no more zeros, the graph will continue, 

eventually to reach green piece that depicts its behavior for the large positive x. 

 



 

 

 

Example:  Graph f(x) = x
2
(x

2
+1)(x+4)

2
 

Note that x
2
 + 1 is always positive, so f(x) can be zero only when x = 0 or x = -4 

zeros 0  -4 

multiplicity 2   2 

behavior of 

graph 

touches x-axis at 1 Touches x –axis at - 4 

 

End behavior:  

Leading coefficient = 1 

factor x
2
 x

2
 + 

1 

(x+4)
2 

degree 2 2 2 

   

Degree of f(x) = 2 + 2+ 2 = 6 and f behaves like y = x
6 
for large |x|, that is, it looks as below 

 

 

 

 



The graph of the function is below 

 

  

 

Remarks:  

- We don’t have enough information to know at what points exactly the graph will change the direction (these points 

are called turning points). (You can learn this in Calculus.) But, we know that there are at most  (n-1) turning 

points  (n is the degree of the polynomial) 

- Though we know how the graph of a polynomial function behaves for large positive and negative values and close to 

its zeros, we need Calculus to determine its behavior  in- between. In this course however, we’ll assume that nothing 

extraordinary takes place there.  

5.2 Properties of Rational functions 

 

A rational function is a function of the form 

01

1

1

01

1

1

)(

)(
)(

bxbxbxb

axaxaxa

xq

xp

polynomial

polynomial
xf

k

k

k

k

n

n

n

n

















 

Example 

14

523
)(

2

24






xx

xxx
xf  

The domain of a rational function is the set of all real numbers except those x, for which q(x) = 0 

To find the domain:    (i) solve q(x) = 0 

                                      (ii)  Write Df = {x | q(x)  0}  

Example:  Find the domain of  
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(i) Solve: denominator  = 0 
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(ii) Df = {x|x 52 } = ),52()52,52()52,(   
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Note that when x is small (close to 0 on the x-axis) then its reciprocal is a large number (positive when x is positive 

and negative when x is negative). For example  if x = 0.0001 then 1/x = 10, 000;   

if    x = - 0.000001 then 1/x =  - 1,000,000. The smaller x, the larger 1/x. In mathematics we indicate that fact by 

saying that when x > 0 approaches 0, then 1/x = f(x) increases without bound and write  

as x  0
+
,  then f(x)  + or  


)(lim

0
xf

x
. Note that in such a case, the point (x, f(x)) on the graph approaches 

the y-axis. We say that the y-axis is a vertical asymptote.  

If on the other hand x  + (that is, x increases without bound) than the values 1/x become smaller and smaller (if x = 

10,000, then 1/x = 0.0001; if x = 1,000,000 then 1/x = 0.000001)  so we say that as x  +, then 1/x = f(x) 0 or that 

0)(lim 


xf
x

. Note that in this  case, the point (x, f(x)) on the graph of the function approaches the x-axis. We say 

that the x-axis is a horizontal asymptote.  
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A rational function often has asymptotes: vertical and/or horizontal/oblique. 

Informally speaking, an asymptote is a straight line (vertical, horizontal or slanted) toward which the graph comes 

near. 

                      

Vertical and horizontal asymptotes               vertical and oblique asymptotes                      vertical and horizontal 

asymptotes 

Example:  Given the graph of a function, find the domain and give the equations of any asymptotes 

a)  

 

Domain ={x|x ≠ -2,3} ;  vertical asymptotes: x =-2, x = 3; horizontal asymptote: y = 1  

 



b)  

 

 

Domain = {x| x ≠ 2} ; vertical asymptote: x = 2; slanted asymptote : y = 2x + 1 ( line passes through (0,1) and (2,5)) 

How to find asymptotes 

Vertical:  1. Reduce f(x) to the lowest terms:  

                                  (i) factor completely the numerator and the denominator; 

                                  (ii) cancel common factors 

                 2. Solve the equation: denominator = 0 

                 3. If x = r is a solution found in 2, then the line x = r is a vertical asymptote  

Horizontal:  

a) if the degree of the numerator  < the degree of the denominator, then the line y = 0 is the  horizontal asymptote 

        (b) if the degree of the numerator = the degree of the denominator, then the line y = 

k

n

b

a
 is    

                the horizontal asymptote                     

       (c) if the degree of the numerator  >  the degree of the denominator, then the graph does   

               not have a horizontal asymptote, however  

 Oblique:    (d) if   the degree of the numerator  = 1 +  the degree of the denominator, then the line  

                      y = (quotient obtained by dividing the numerator by the denominator)  

                     is an oblique(slanted)  asymptote. 

Remarks: 1. A rational function can have only one horizontal/oblique asymptote, but many  vertical asymptotes. 

                 2. If a rational function has a horizontal asymptote, then it does not have an oblique  one. 

                 3. The graph of a rational function can cross a horizontal/oblique asymptote, but does  not cross 

                      a vertical asymptote 

                 4. Horizontal/oblique asymptotes describe the behavior of function for x with large absolute   

                        value (the end behavior); vertical asymptotes describe the behavior of function near a  point.    



Example:  Find the asymptotes for the following functions 

a) 
62

53
)(






x

x
xf  

Vertical asymptote: 1) f is in lowest terms 

                                    2) 2x-6 = 0 

                                         2x = 6 

                                          x = 3 

                                    3) vertical asymptote: x = 3 

 

Horizontal/oblique asymptote:  

degree of numerator (1) = degree of the denominator(1),  
2

3
y  is the horizontal asymptote 

b) 
23

2

63

152
)(

xx

xx
xf




  

Vertical asymptote: 1) 
)2(3

152

63

152
)(

2

2

23

2











xx

xx

xx

xx
xf  is in lowest terms (numerator can’t be factored) 

                                    2) 3x
3 
- 6 x

2 
= 0 

                                         3x
2
(x-2) = 0 

                                          x
2
 = 0   or x - 2 = 0 

                                        x = 0   or   x = 2 

                                    3) vertical asymptotes : x = 0, x = 2 

Horizontal/oblique  asymptote:  

degree of numerator (2) < degree of the denominator(3),   y = 0  is the  horizontal asymptote 

c) 
2

13
)(

2

5






x

x
xf  

Vertical asymptote: 1) f(x) is in lowest terms (the denominator cannot be factored) 

                                    2) x
2 
+ 2

 
= 0 

                                         x
2 
= - 2   (not possible) 

                                         no solution  

                                    3) vertical asymptotes : none 

Horizontal/oblique asymptote:  

degree of numerator (5) >  degree of the denominator(2), there is no horizontal asymptote 

degree of numerator (5) ≠  1 + degree of the denominator(2), there is no oblique asymptote 

d)  
2

143
)(

2

23






x

xx
xf  

Vertical asymptote: 1) f(x) is in lowest terms  

                                    2) x
2 
- 2= 0 

                                         x
2
 = 2 

                                          x = 2  



                                         

                                    3) vertical asymptotes : x = - 2 , x = 2  

 

Horizontal/oblique  asymptote:  

degree of numerator (3) > degree of the denominator(2),   there is no horizontal asymptote 

degree of numerator (3) = 1 +  degree of the denominator(2), there is an oblique asymptote 

                                   3x – 4         

                    x
2
 – 2  3x

3
 – 4x

2
 + 1 

                                -3x
3
         + 6x 

                                        -4x
2
 + 6x + 1 

                                          4x
2
         - 8 

                                                  6x - 7 

                      Oblique asymptote:   y = 3x -4  

 

Remark: When looking for a vertical asymptote, it is important to make sure that the function is reduced to the 

lowest terms.  To see why, consider function 
2

4
)(

2






x

x
xf . Note that 

.2),2(
)2(

)2)(2(

2

4
)(

2










 xifx

x

xx

x

x
xf The graph of f(x) is therefore a straight line y = x-2, with a 

hole at (-2, -4), hence has  no asymptote. 

 

Graphing rational functions 

We can graph some rational functions using transformations 

Example: Use transformations to graph  1
)3(

2
)(

2





x
xf  

 Basic function: 
2

1

x
y                                                             

2)3(

1




x
y  (shift left by 3)  

                              
 

 

 

 



22 )3(

1
2

)3(

2







xx
y (vertical stretch)                     1

)3(

2
2





x
y    (Shift down by 1) 

                       

5.3 Sketching the graph of a rational function
)(

)(
)(

xq

xp
xf   

1. Find the domain: (i) solve q(x) = 0 

                                 (ii) Df = {x | q(x)  0}  

 

2. Find x- and y-intercepts:   y-intercept: y = f(0) 

                                                   x- intercepts:  numerator = 0 

3. Find vertical asymptotes, if any          

 Remark:    If  x = r is excluded from the domain and x = r is not a vertical                

                asymptote, then the graph of f will pass through the point (r, “reduced”f (r)) but  

                the point itself will not be included. We put an open circle around that point  

               The graph of f has a “hole” at x = r 

 

4. Find the horizontal/oblique asymptote, if any. 

 

5. Find the points where the graph crosses the horizontal/oblique asymptote y = mx +b 

                                   (i) solve the equation f(x) = mx + b 

 

6. Check for symmetries 

                               (i) If  f(-x) = f(x),  then the graph is symmetric about y- axis; 

                               (ii) If  f(-x) = - f(x), then the graph is symmetric about the origin 

  Remark: If the graph is symmetric then only graph function for x >0 and use symmetry to graph the  

                corresponding part for x<0 

 

7. Make the sign chart for the “reduced” f(x)  

                             (i) plot x-intercepts and points excluded from the domain on the number line;  

                                  these points divide the number line into a finite number of test intervals 

                             (ii) choose a point in each test interval and compute the value of f at the test point 

                             (iii) based on the sign of f at the test point, assign the sign to each test interval 

Remark: When f(x) > 0, then the graph of f is above the x-axis. 

               When f(x) < 0, then the graph is below the x-axis 

 

8. Sketch the graph of f using 1)-7):  

                              (i) Draw coordinate system and draw all asymptotes using a dashed line 

                              (ii) plot the intercepts, points where the graph crosses the horizontal/oblique asymptote 

                                     and the points from the table in step 7. 

                              (iii) join the points with a continuous curve taking into consideration position of the  

                                    graph relative to the x-axis (step 7) and  behavior near asymptotes. 



 

Example:   Graph 
4

12
)(

2

2






x

xx
xf  

1) Domain:   x
2
 – 4 =   0 

                  x
2
 = 4 

                  x = 2, x = -2 

Df = {x|x ≠ -2, 2} 

2) y –intercept: y = f(0) = (-12)/(-4)= 3 

x- intercepts:  x
2
 + x – 12 = 0 

                          (x+4)(x-3) = 0 

                       x = - 4     or x = 3 

3) Vertical asymptotes  
)2)(2(

)3)(4(

4

12
)(

2

2











xx

xx

x

xx
xf  

                         (x-2)(x+2) = 0 

                         x = 2    x = -2 

vertical asymptotes: x = -2, x = 2 

4) Horizontal/oblique asymptotes 

Degree of numerator(2) = degree of the denominator(2), y = 1/1= 1 is the horizontal asymptote 

5) Intersection with asymptote:   f(x) = 1 

                               

8

412

1
4

12

22

2

2










x

xxx

x

xx

 

             The graph crosses the horizontal asymptote at x = 8, that is at the point (8,1) 

6) Symmetries: 

            
 

4

12

4)(

12)(
)(

4

12
)(

2

2

2

2

2

2
















x

xx

x

xx
xf

x

xx
xf

     

               f(x) is not the same as f(-x), so f is not even and therefore not symmetric about y-axis 

              

 

4

12

4

12
)(

4

12

4)(

12)(
)(

2

2

2

2

2

2

2

2





















x

xx

x

xx
xf

x

xx

x

xx
xf

 

              f(-x) and –f(x) are not the same so, f is not odd and therefore not symmetric about the origin 

7)  

 
 

x 

4

12
)(

2

2






x

xx
xf  

-5 
positive

21

8

4)5(

12)5()5(
2

2





 

-3 
negative

5

6

4)3(

12)3()3(
2

2





 

0 3    positive 



2.5 
negative

9

13

45.2

125.25.2
2

2





 

4 
positive

3

2

44

1244
2

2





 

 

 
8) 

 
 

5.4  Solving polynomial and rational inequalities 

 

Solving by graphing 

 

To solve an inequality f(x) > 0  (< 0, > 0, < 0) by graphing: 

(i) Graph function y = f(x). Make sure to compute exactly the x-intercepts (solve f(x) = 0) 

(ii) Read the solutions from the graph.  

To solve f(x) > 0, find the intervals (the x values) on which  the graph is above x-axis but not on x axis.  

To solve f(x) < 0, find the intervals (the x values) on which  the graph is below x-axis, but not on the x-axis.  

 

To solve f(x) > 0, find  intervals (the x values) on which  the graph is above or on the  x-axis.  

To solve f(x) < 0, find  intervals (the x values) on which  the graph is below or on the  x-axis.  

 

 

 

 

 

 

 

 



Example:  The graph of a function f is given below.  Use the graph to solve given inequality: 

 

a)  

           

          
 

f(x) > 0   for x  in  (-,-2)  (-2,2)  (4, +) 

 

f(x) > 0   for x  in  (-,2]  [4, +) 

 

 

 

b)  

 
 

 

f(x) < 0   for x in  (-4,-3)(2,3) 

 

f(x)  < 0    for x in  [-4,-3)  [2, 3) 

 

Example:     Solve  0)4()2(2 23  xxx  

 

Let 
23 )4()2(2)(  xxxxf .  

f is a polynomial with zeros: 0, 2, -4. The multiplicities of zeros are 1, 3, 2 respectively. The graph will cross the x axis 

at 0 and 2 and touch the x-axis at -4. For large |x|, f(x) behaves line y = 2x
6
. The graph of f(x) is below: 



 
Now,  f(x) > 0 when x belongs to (-,-4)  (-4,0)  (2, +). 

Therefore the solution of 0)4()2(2 23  xxx   is (-,-4)  (-4,0)  (2, +). 

 

Algebraic methods 

Solving a Polynomial Inequality:   polynomial  > 0  (> 0, < 0,  < 0) 

 

(i) Write the inequality in the standard form (0 on the right hand side) 

(ii) Find the zeros of the polynomial that is solve the equation : polynomial  = 0 

(iii) Plot the zeros on the number line 

(iv) The zeros divide the number line into a finite number of intervals on which the polynomial has the same sign.  

Choose a number in each interval (a test point)  and evaluate the value of the polynomial at each number. 

(v) If the value of the polynomial at the chosen number is positive (> 0), then the polynomial is positive on the 

whole interval 

            If the value of the polynomial at the chosen number is negative (< 0), then the polynomial is negative  

             on the whole interval 

(vi) Choose, as the solution, the intervals on which the polynomial has a desired sign. Use interval notation. 

Include the endpoints only when the original inequality is  <  or  > . 

If there are two separate intervals on which the polynomial has a desired sign, use the union sign, ,  between 

the intervals. 

 

Example:   Solve  x
3 
 >  x  

(i) x
3
 > x 

x
3
 – x > 0 

(ii) x
3
 – x = 0 

x(x
2
- 1)= 0 

x = 0  or   x
2
 – 1 =0 

                x
2
 = 1 

                x = 11   
 

(iii)  

 
(iv)   

interval Test point  Value of  x
3
-x at the test  point 

(-, -1) -2 (-2)
3
 –(-2) = -8 + 2= -6              negative 

(-1,0) - 0.5 (-0.5)
2
- (-0.5)= -.125+.5=.375   positive 

(0, 1) 0.5 (.5)
3
-(.5)= -.375                          negative 

(1, ) 2 2
3
- 2= 6                                      positive 



 

(v)  

                 
(vi) Since the inequality is x

3
 – x  > 0, we choose the intervals on which the polynomial is positive and include 

the endpoints. There are two intervals, so we use . 

 

Solution: [-1,0]  [1,) 

 

Solving a Rational Inequality:  )0,0,0(0 
Q

P
, P, Q are polynomials 

(i) Write the inequality in the standard form )0,0,0(0 
Q

P
 (0 on the right hand side) 

(ii) Solve the equations: P = 0   and Q = 0 

(iii) Plot the solutions on the number line. Place open circle at each solution of  Q = 0; those numbers cannot 

ever be included in the solution set (they make the denominator zero and are out of the domain) 

(iv) The solutions divide the number line into a finite number of intervals. A rational function  will have a 

constant sign in each interval. Choose a number in each interval and evaluate the value of the expression 

Q

P
at each number. 

(v) If the value of 
Q

P
is positive (> 0), then  

Q

P
 is positive on the whole interval 

   If the value of
Q

P
 is negative (< 0), then 

Q

P
 is negative on the whole interval 

(vi) Choose, as the solution, the intervals on which 
Q

P
has a desired sign. Use interval notation. Include the 

endpoints only when the original inequality is <  or  > . Remember to never include the endpoint with an 

open circle! 

If there are two or more such intervals, use the union sign, . 

  

Example:  Solve 2
4

2






x

x
 

(i)  

02
4

2

2
4

2











x

x

x

x

 

0
4

10

0
4

822

0
4

)4(2

4

2





















x

x

x

xx

x

x

x

x

 

(ii) Numerator = 0               denominator = 0 

–x+10 = 0                          x- 4 = 0 

x = 10                                  x = 4 

 

 



(iii)  

 
 

(iv)  

 

 

interval 

 

Test point Value of 
4

10





x

x
 at the test point 

(- 4)  

0 
4

10

40

100







     negative 

 

(4, 10) 

 

5 
1

5

45

105





          positive 

 

(10, +) 

 

11 
7

1

411

1011 





     negative 

 

   

(v)  

                       

(vi) Since the inequality is  
4

10





x

x
> 0, we choose the intervals on which  

4

10





x

x
is positive and include 

endpoints that do not have an open circle . 

Solution: (4, 10] 

 
 
 
 
 
 
 


