MAC 1140

LA session

Week 14

1. Let S_{n} denotes the statement: 2 is a factor of $n(n+1)$. Write the statements $S_{1}, S_{2}, S_{3}, S_{k}, S_{k+1}$.
2. Let Sn be the statement: $1+2+3+4+\ldots+n=\frac{n(n+1)}{2}$. Write the statements $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{\mathrm{k}}, \mathrm{S}_{\mathrm{k}+1}$
3. Let Sn be the statement: $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$. Write the statements $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{\mathrm{k}}, \mathrm{S}_{\mathrm{k}+1}$.
4. Use the Principle of Mathematical Induction to show that the statements below are true for all $\mathrm{n} \geq 1$.
a) $1+2+3+4+\ldots+n=\frac{n(n+1)}{2}$
b) $\mathrm{n}^{3}-\mathrm{n}+3$ is divisible by 3
c) $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$
