MAC 1140

LA session

Week 3

1. Factor completely
a) $3 x^{3}-18 x^{2}-48 x$
b) $x^{3}-2 x^{2}-x+2$
c) $x^{6}-2 x^{3}+1$
d) $2(x+1)^{4}(2 x-3)^{3}-4(x+1)^{3}(2 x-3)^{4}$
e) $8 x^{3}-27$
2.Use synthetic division to find the quotient and remainder when $-2 x^{3}+3 x^{2}-1$ is divided by $x+2$
2. Use synthetic division to determine whether $(x-2)$ is a factor of $x^{3}-5 x^{2}+7 x-2$
3. Use the Remainder Theorem to find the remainder when $f(x)=2 x^{5}-3 x^{4}+5 x^{2}-3 x+4$ is divided by $x+1$.
4. How are the zeros of a function defined? What is the maximum number of real zeros that a polynomial function can have? How many real zeros can the function $f(x)=3 x^{6}-3 x^{4}-4 x^{3}+7 x-2$ have?
5. List all potential rational zeros of each polynomial function. Do not attempt to find the zeros.
a) $f(x)=-2 x^{5}+x^{4}-3 x^{2}+7 x+15$
b) $f(x)=3 x^{4}+2 x^{3}-8$
6. Find all real zeros of each polynomial function and use them to factor each function over the real numbers.
a) $f(x)=2 x^{4}+3 x^{3}-8 x^{2}-9 x+6$
b) $f(x)=x^{5}-2 x^{4}-2 x^{3}-2 x^{2}-3 x$
7. Find real solutions of the following equations
a) $x^{3}-2 x+1=0$
b) $4 x^{4}-12 x^{3}+11 x^{2}-3 x=0$
