MAC 1140

LA session

Week 3

- 1. Factor completely
- a) $3x^3 18x^2 48x$
- b) $x^{3}-2x^{2}-x+2$
- c) $x^{6}-2x^{3}+1$
- d) $2(x+1)^{4}(2x-3)^{3}-4(x+1)^{3}(2x-3)^{4}$
- e) 8x³- 27

2.Use synthetic division to find the quotient and remainder when $-2x^3+3x^2-1$ is divided by x+2

- 3. Use synthetic division to determine whether (x-2) is a factor of $x^3 5x^2 + 7x 2$
- 4. Use the Remainder Theorem to find the remainder when $f(x) = 2x^5 3x^4 + 5x^2 3x + 4$ is divided by x+1.

5. How are the zeros of a function defined? What is the maximum number of real zeros that a polynomial function can have? How many real zeros can the function $f(x) = 3x^6 - 3x^4 - 4x^3 + 7x - 2$ have?

6. List all potential rational zeros of each polynomial function. Do not attempt to find the zeros.

a)
$$f(x) = -2x^5 + x^4 - 3x^2 + 7x + 15$$

b) $f(x) = 3x^4 + 2x^3 - 8$

7. Find all real zeros of each polynomial function and use them to factor each function over the real numbers.

- a) $f(x) = 2x^4 + 3x^3 8x^2 9x + 6$
- b) $f(x) = x^5 2x^4 2x^3 2x^2 3x$

8. Find real solutions of the following equations

a)
$$x^{3}-2x + 1 = 0$$

b) $4x^4 - 12x^3 + 11x^2 - 3x = 0$