MAC 1140

LA session

Week 6

1. The graph of a function f is given below.

Use the graph above to solve the following inequalities.
a) $f(x)>0$
b) $f(x) \leq 0$
2. Sketch the graph of the function $f(x)=-3 x^{2}(x+3)(x-2)^{5}\left(x^{2}+1\right)$ and use it to solve the inequality

$$
-3 x^{2}(x+3)(x-2)^{5}\left(x^{2}+1\right) \leq 0
$$

3. Use algebraic methods to solve the following inequalities
a) $x^{5} \geq x^{3}$
b) $2 \mathrm{x}^{2}-7 \mathrm{x}-4<0$
c) $x^{4}+x^{3}-x^{2}>0$
d) $\frac{x-3}{2 x^{2}-50} \leq 0$
e) $\frac{2 x+1}{x-3}>1$
f) $\frac{x-1}{x+2}<\frac{x}{x-1}$
4. Find the domain of the following functions
a) $f(x)=\sqrt{\frac{x^{2}-1}{2 x+5}}$
b) $f(x)=\sqrt{x^{3}-2 x^{2}-8 x}$
5. Which of the following graphs represents a one-to-one function? Explain why or why not.
a)

b)

c)

6. Check whether the functions $f(x)=\frac{3 x+1}{x-2}$ and $g(x)=\frac{x-2}{3 x+1}$ are inverses of each other.
7. Sketch the graph of $f(x)=x^{3}+1$ and determine whether it is one to one. If it is, find its inverse and sketch its graph. Find the domain and range of both, f and f^{-1}.

8. The graph of a one-to one function is given below. Draw, in the same coordinate system, the graph of its inverse.

9. Find the inverse of the following one-to-one functions
a) $f(x)=\frac{3 x+1}{x-2}$
b) $f(x)=x^{2}-4, \mathrm{x} \geq 0$
10. Points $(1,3),(2,4),(3,5)$ are on the graph of a one-to-one function f. What is $f(1)$? What is $f^{-1}(3)$?
