MAC 1140

LA sessions

Week 7

1. Graph given functions using transformations. Start with the basic function. Plot accurately at least 3 point and use them to perform transformations. Do one transformation at a time and write the equation for the functions in intermediate steps. Don't forget to draw the asymptotes!
a) $f(x)=3 \cdot 2^{-x+1}$
b) $f(x)=-e^{2 x}-3$
2. Solve the following equations
a) $4^{2 x-1}=16^{3 x}$
b) $7^{x^{2}-2}=49^{x}$
c) $3^{x+6} \cdot 9^{x}=27^{x^{2}}$
3. Graph the following function
$f(x)= \begin{cases}x^{2}-1 & , x<0 \\ -3^{x} & , x \geq 0\end{cases}$

4. Find two functions f and g such that $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$, where
a) $h(x)=e^{x^{2}-1}$
b) $h(x)=\ln \left(\frac{x-1}{x+4}\right)$
5. Use the properties of exponents to find value of $a^{-2 x}$ knowing that $a^{x}=3$.
6. In your own words, explain what $\log _{2} 5$ is.
7. Find the domain of the following functions
a) $f(x)=\log _{4}\left(x^{4}+2 x^{3}-8 x^{2}\right)$
b) $f(x)=\ln \left(\frac{x+6}{x^{2}-3}\right)$
8. Graph given functions using transformations. Start with the basic function. Plot accurately at least 3 point and use them to perform transformations. Do one transformation at a time and write the equation for the functions in intermediate steps. Don't forget to draw the asymptotes
a) $f(x)=\log _{3}(2 x+1)+3$
b) $f(x)=-2 \log _{2}(x-4)$
9. Graph the following function
$f(x)= \begin{cases}2^{x}+1 & , x<1 \\ \log _{3} x & , x \geq 1\end{cases}$

10. Solve the following equations. Give exact values. Do not use a calculator.
a) $\log _{2}\left(\frac{x+1}{x+4}\right)=1$
b) $3 e^{x+1}=8$
11. Graph the following functions and determine whether they have the inverse. Justify your answer. If a function have the inverse, graph the inverse, find its formula and find the domain and range of the function and its inverse.
a) $f(x)=2 \ln (x+1)-3$
b) $f(x)=-3^{-x}+4$
c) $f(x)=e^{x+1}, x \geq-2$
