Review -Chapter 10

1. Find the center, foci and vertices of the following ellipses
a) $3 \mathrm{x}^{2}+4 \mathrm{y}^{2}-36 \mathrm{x}+32 \mathrm{y}+160=0$
b) $\frac{(x+3)^{2}}{36}+\frac{(y+1)^{2}}{9}=1$
2. Find the center, vertices, foci, transverse axis and the equations of asymptotes of given hyperbolas
a) $x^{2}-4 y^{2}-2 x-24 y-39=0$
b) $9 \mathrm{y}^{2}-16 \mathrm{x}^{2}=144$
c) $\frac{(x+2)^{2}}{4}-\frac{(y-3)^{2}}{9}=1$
3. Find the equation, in the standard form, of the hyperbola with vertices $(0, \pm 4)$ and asymptotes $y= \pm \frac{1}{2} x$
4. Find the equation, in the standard form, of the hyperbola with vertices $(\pm 5,0)$ and foci $(\pm 8,0)$
5. Find the equation, in the standard form, of the hyperbola with center $(3,2)$, vertex at $(3,4)$ and focus at $(3,-3)$
6. Write the equation for the graph below

7. Find the asymptotes of the following hyperbolas
a) $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$
b) $\frac{(y-1)^{2}}{4}-\frac{(x+3)^{2}}{25}=1$
8. Find the equation, in the standard form, of the ellipse with foci at $(4,0)$ and $(4,-6)$ whose major axis has the length of 10. Graph the ellipse.

9. Find the vertex, focus and the directrix of the parabola $y^{2}=-12 x$. Graph the parabola.

10. Find the standard equation of the parabola with vertex at $(5,3)$ and focus at $(2,3)$. Graph the parabola.

11. Graph the equation.
$\frac{(x+2)^{2}}{4}+\frac{(y+1)^{2}}{9}=1$

12. Find the vertex, focus and the directrix of the parabola given by $y^{2}-8 y-8 x=-40$. Graph the equation.

13. Graph the equation $\frac{y^{2}}{9}-\frac{x^{2}}{4}=1$

14. Graph the equation $4 x^{2}+9 y^{2}=36$ and find its foci.

15. Graph the equation $\frac{(x-1)^{2}}{9}-\frac{(y+1)^{2}}{25}=1$

16. Graph the equation $36 x^{2}=4 y^{2}+144$

17. Find the equation in the standard form, of an ellipse with vertices at $(4,3)$ and $(4,9)$ and a focus at $(4,8)$
18. Find the vertex, focus and the directrix of the parabola $(x-2)^{2}=-8(y+3)$. Graph the parabola.

19. Find the standard equation of the parabola with vertex at $(0,0), \mathrm{x}$-axis as the axis of symmetry and passing through the point $(4,9)$
20. Write the equation, in the standard form, of the hyperbola whose graph is given below.

21. Graph the equation $x^{2}=6 y$

22. Find the standard equation of the parabola with vertex at $(6,-2)$ and focus at $(6,-9)$.
23. Find the equation of the ellipse with center at $(0,0)$, focus at $(-5,0)$ and vertex at $(8,0)$
24. Write given equation in the standard form. Find its center, foci and vertices. Graph the equation.

$$
9 x^{2}+25 y^{2}-36 x+50 y-164=0
$$

25. Find the equation of the hyperbola with center at $(0,0)$, focus at $(2 \sqrt{5}, 0)$ and vertex at $(4,0)$. Graph it.
26. Find the standard equation of the parabola with focus at $(-4,0)$ and the directrix the line $x=4$
27. Find the standard equation of the parabola with the focus at $(0,3)$ and the directrix, the line $y=-3$.

Give the two points that define the latus rectum.

Answers:

1) a) center: $(6,-4)$; foci: $(5,-4),(6,-4)$; vertices (4,-4). (8,-4)
b) center: $(-3,-1)$; foci: $(-3-3 \sqrt{3},-1),(-3+3 \sqrt{3},-1)$; vertices $(-9,-1),(3,-1)$
2) a) center $(1,-3)$; vertices: $(-1,-3),(3,-3)$; foci: $(1-\sqrt{5},-3),(1+\sqrt{5},-3)$;transverse axis: $y=-3$; asymptotes:

$$
y=-\frac{1}{2} x-\frac{5}{2}, y=\frac{1}{2} x-\frac{7}{2}
$$

b) center $(0,0)$; vertices: $(0,-4),(0,4)$; foci: $(0,-5),(0,5)$;transverse axis: $y=0$; asymptotes: $y= \pm \frac{4}{3} x$
c) center $(-2,3)$; vertices: $(-4,3),(0,3)$; foci: $(-2-\sqrt{13}, 3),(-2+\sqrt{13}, 3)$;transverse axis: $\mathrm{y}=3$; asymptotes: $y=-\frac{3}{2} x, y=\frac{3}{2} x+6$
3) $\frac{y^{2}}{16}-\frac{x^{2}}{64}=1$
4) $\frac{x^{2}}{25}-\frac{y^{2}}{39}=1$
5) $\frac{(y-2)^{2}}{4}-\frac{(x-3)^{2}}{21}=1$
6) $\frac{(x+2)^{2}}{16}+\frac{(y+1)^{2}}{4}=1$
7) a) $y= \pm \frac{1}{2} x$; b) $y=-\frac{2}{5} x-\frac{1}{5}, y=\frac{2}{5} x+\frac{11}{5}$
8) $\frac{(y+3)^{2}}{25}+\frac{(x-4)^{2}}{16}=1$

9) Vertex: $(0,0)$; focus: $(-3,0)$; directrix: $x=3$

10) $(y-3)^{2}=-12(x-5)$

11)

12) Vertex: (3,4); focus: $(5,4)$; directrix: $x=1$

13)

14) foci $(\sqrt{5}, 0),(-\sqrt{5}, 0)$

15)

16)

17) $\frac{(x-4)^{2}}{5}+\frac{(y-6)^{2}}{9}=1$
18) Vertex: $(2,-3)$; focus: $(2,-5)$; directrix: $y=-1$

19) $y^{2}=\frac{81}{4} x$
20) $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
21)

22) $(x-6)^{2}=-28(y+2)$
23) $\frac{x^{2}}{64}+\frac{y^{2}}{39}=1$
24) $\frac{(x-2)^{2}}{25}+\frac{(y+1)^{2}}{9}=1$; center $(2,-1)$; vertices: $(-3,-1),(7,-1)$; foci: $(-2,-1),(6,-1)$

25) $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$

26) $y^{2}=-16 x$
27) $x^{2}=12 y ;(6,3),(-6,3)$

