Review -Chapter 8 \& Sec 9.5

1) Solve the system of equations.
a) $\left\{\begin{array}{l}x y=8 \\ x+y=-6\end{array}\right.$
b) $\left\{\begin{array}{l}x^{2}-x y=20 \\ x-2 y=3\end{array}\right.$
2) Solve the system of equations by substitution.
$\left\{\begin{array}{l}2 x-3 y=4 \\ x-5 y=-6\end{array}\right.$
3) Solve using the elimination method
$\left\{\begin{array}{l}2 x^{2}+y^{2}=4 \\ 3 x^{2}-2 y^{2}=6\end{array}\right.$
4) Solve using the elimination method
$\left\{\begin{array}{l}6 x+3 y=36 \\ 2 x-6 y=40\end{array}\right.$
5) Find value of the following determinant

$$
\left|\begin{array}{ll}
3 & -2 \\
1 & -4
\end{array}\right|
$$

6) Solve for x
$\left|\begin{array}{ll}8 & 2 \\ x & 3\end{array}\right|=7$
7) Graph the equations in the given system to determine the number of solutions. Then solve the system to find points of intersection.
a) $\left\{\begin{array}{l}x^{2}+y^{2}=9 \\ y=x^{2}-3\end{array}\right.$
b) $\left\{\begin{array}{l}x^{2}+y^{2}=4 \\ y^{2}-x^{2}=1\end{array}\right.$
8) Check whether Cramer's Rule can be used to solve the systems below. If yes, use Cramer's Rule to solve them.
a) $\left\{\begin{array}{l}x-y+4 z=2 \\ 2 x+z=5 \\ -x+y-4 z=-3\end{array}\right.$
b) $\left\{\begin{array}{l}6 x-3 y=-6 \\ -4 x+y=-10\end{array}\right.$
c) $\left\{\begin{array}{l}2 x-4 y=5 \\ -4 x+8 y=10\end{array}\right.$
9) Check whether $(-4,1)$ is a solution of the system $\{2 x+15 y=7$
$\{10 x-42 y=22$
10) Solve the system of equations. [Hint: Let $u=\frac{1}{x}$ and $v=\frac{1}{y}$, and solve for u and v.]

$$
\left\{\begin{array}{l}
\frac{2}{x}+\frac{3}{y}=18 \\
\frac{1}{x}-\frac{2}{y}=-5
\end{array}\right.
$$

11) A restaurant manager wants to purchase 200 sets of dishes. One design costs $\$ 25$ per set while another costs $\$ 45$ per set. If she only has $\$ 7400$ to spend, how many of each design should be ordered?

Answers:

1)a) $(-2,-4),(-4,-2)$; b) $(5,1),(-8,-11 / 2)$
2) $(38 / 7,16 / 7)$
3) $(\sqrt{2}, 0),(-\sqrt{2}, 0)$
4) $(8,-4)$
5) -10 ;
6) 8.5
7) а) 3 solutions; $(0,-3),(\sqrt{5}, 2),(-\sqrt{5}, 2)$

b) 4 solutions; $(\sqrt{3 / 2}, \sqrt{5 / 2}),(-\sqrt{3 / 2}, \sqrt{5 / 2}),(\sqrt{3 / 2},-\sqrt{5 / 2}),(-\sqrt{3 / 2},-\sqrt{5 / 2})$

8) a) can't be used; b) $(6,14)$; c) can't be used;
9) no
10) $(1 / 3,1 / 4)$
11) 130 of $\$ 25$ and 70 of $\$ 45$.

